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WHAT IS RELIABILITY 

• Reliability is defined as the probability that a device (system) will perform its intended function during a 
specified period of time under stated conditions 

• Let us denote by T the lifetime of the system under consideration. As we live in a world where design, 
manufacturing, transport and operation cannot be held perfectly constant (or perfectly controlled), T 
will be a random quantity 

• We can now define reliability more formally as 𝑅 𝑡 = Pr⁡[𝑇 > 𝑡], that is the reliability of a system at 
time 𝑡 is the probability that the system’s lifetime will exceed 𝑡 (or as stated above will perform its 
intended function at least as long as 𝑡). 1 − 𝑅(𝑡) is then the probability that the system will not 
perform its function and we typically call this the failure rate 𝐹(𝑡). 

• (Data-driven) reliability engineering is about studying, estimating and analysing reliability of 
components and systems (using lifetime and other data). 

https://en.wikipedia.org/wiki/Probability


WHY DO WE NEED RELIABILITY ENGINEERING 

• As operators or owners of assets, reliability is a key input to lifecycle costs 

• As designers and engineers reliability is a key design parameter which will determine the cost of the 
component 

• Knowing the reliability of a system is a key prerequisite to design improvements 

• Setting up test plans requires an understanding of reliability theory to make sense of the results – what 
reliability did a test prove, for how long (or how many units) I need to test to be able to prove a given 
reliability level? 

• Reliability can (and should) be used to guide maintenance decisions – if unexpected (unscheduled) 
replacements are costly, is there an optimal replacement period (and what is it) which optimizes overall 
cost? The answer to this question will depend on the reliability and replacement cost of the unit. 

• Reliability is at the heart of Reliability Centered Maintenance  



LET’S DIG IN… 

• Assume we test 100 bearings to failure and record the time to failure on each test. The first 8 failure 
times are (let’s say we are measuring in equivalent months from an accelerated lifetime test): 

• The histogram of all 100 values is given below 
Time to failure 

(months) 
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• What is the reliability of this bearing at 5 
years (60 months) and at 10 years (120 
months)? 

• What is the L10 life (the time at which the 
failure rate is 10%) 

• What is the 90% confidence bound for the 
calculations above? 

• If this bearing is designed for a lifetime (L10) 
of 2 years did this test confirm or reject this 
design? 



WEIBULL ANALYSIS 

• The most common statistical technique for analysing lifetime data is Weibull analysis due to it’s flexibility and 
ease of interpretation (few parameters) 

• The Weibull distribution has 2 parameters, shape (𝛽) and scale(𝜂) and its distribution function is given by 

𝐹 𝑡 = 1⁡ − exp −
𝑡

𝜂

𝛽
 

• The parameters 𝜂 and 𝛽 have important interpretations: 𝜂 is also called characteristic life and determines the 
time by which 63.2% of all units will have failed, while 𝛽 also called slope parameter is indicative of the failure 
mode: 

• 𝛽  < 1 indicates infant mortality (e.g, in electronic components due to poor quality control, mis-assembly, etc) 

• 𝛽 = 1 indicates random failure independent of component age (e.g. human errors, natural causes, etc) 

• 𝛽 > 1 indicates wear-out type of failure (failure rate increases with age, e.g. fatigue, corrosion, erosion) 

• Once we have a way to estimate 𝛽 and 𝜂 we can calculate component reliability at any time 𝑡 



• This is a so-called Weibull plot 

• Using log transformations, the 
Weibull CDF can be linearized and 
the 𝛽 and 𝜂 can be estimated using a 
linear regression – this method is 
called median rank regression 

• There are other methods (e.g. 
maximum likelihood) to estimate 
these parameters 

 

This plot tells us some important 
things: 

• About 2/3 of all bearings will fail by 
56 months of operation (that 
follows directly from the value of 𝜂) 

• The failure mode is a slow wear-out 
likely due to low-cycle fatigue (that 
follows from the value of 𝛽) 



• The L10 life is 13 months which 
means that the bearing doesn’t 
conform to the design specifications 

• 5-year reliability is ≈33% and 10-year 
reliability is ≈4% 

• Confidence bounds (grey area 
around the linear fit) are very tight 
since we have a decent amount of 
data 

 

 

Implications for maintenance strategy: 

• Consider including a replacement of 
these bearings at an annual 
frequency (depending on the cost of 
unscheduled repair) 

• From a cost-benefit analysis is there 
(a potentially more costly) bearing 
design with better reliability which 
will decrease overall CAPEX + OPEX 
costs? 

 



EXTENSIONS 

• In many cases your data will not look so nice on Weibull paper. That suggests that you might need to 
consider: 

• Different distribution – e.g. Lognormal 

• 3-parameter Weibull (e.g., in cases where failure-free time is a reasonable conjecture) 

• Multiple failure modes (bathtub curve) 

• In our example we worked with time as the measure of lifetime. Different measures such as cycles, 
miles, production (e.g. for wind turbines) can be used in a completely analogous way 

• With field data, you will have “suspensions” or units which have not failed at the time of data collection, 
also called (right-) censored data – the Weibull methodology can easily handle that 

• Often, various units can be exposed to very different environments (e.g., wind turbines are placed in 
very different conditions with respect to turbulence, shear, ambient temperature – we mention a class 
of models that can handle this on the next slide 



PROPORTIONAL HAZARD MODELS 

• The concept of hazard rate, h t , is central in survival analysis. The hazard rate can loosely be defined as 
the probability of failure over the next small period of time [𝑡; 𝑡 + ∆𝑡] given that the system has not failed 
up to time 𝑡.  For example, for the Weibull distribution, the hazard rate takes the form  

h t =
𝛽

𝜂

𝑡

𝜂

𝛽−1

 

• In proportional hazard models the hazard rate is modelled as a function of some exogenous variables, 
𝑋1, 𝑋2, … , 𝑋𝑝 as⁡h t  = h0 t exp⁡(𝜆1𝑋1𝑡 + 𝜆2𝑋2𝑡 +⋯+ 𝜆𝑝𝑋𝑝𝑡). h0 t  is called the baseline hazard (could 
be the Weibull hazard given above). 

• The 𝜆⁡parameters (together with the parameters in the baseline hazard) are estimated using maximum 
likelihood. For example, if 𝑋1𝑡 is the ambient temperature at time 𝑡, and  𝜆1 is positive, then a higher 
ambient temperature increases the hazard rate (and failure rate).  

 

If units are exposed to different ambient temperature in the field, the proportional hazard model will enable 
us to reflect that in their reliability analysis and consequently lead to customized maintenance strategy! 



SOFTWARE 

• A number of commercially available packages can estimate and provide further functionality based on 
Weibull analysis. Some are Reliasoft, Super Smith, as well as industry specific packages (e.g. DNV GL’s 
Maros for the oil and gas industry) 

• In my previous work we have mostly build our own analytic library using Matlab, the examples in these 
slides are made from scratch in R (which is open source) – so one doesn’t need a big investment in 
software 

• Much more important than software is data collection, organization, storage and access. In many cases, 
data is collected in a decentralized, non-standardized way which presents significant challenges to a 
data-driven reliability-oriented culture 


